CORPORAL PUNISHMENT BY MOTHERS
AND CHILDREN'S COGNITIVE DEVELOPMENT:
A LONGITUDINAL STUDY OF TWO AGE COHORTS

Murray A. Straus
Family Research Laboratory, University of New Hampshire
Durham, NH 03824 603-862-2594 murray.straus@unh.edu

Mallie J. Paschall
Prevention Research Center, Berkeley, California 94704
paschal@pire.org

1 We would like to thank the members of the Family Research Laboratory Seminar and Laurence Hamilton and Kathleen McCartney for their critical and helpful comments on an earlier version. This paper is part of a research program on corporal punishment at the Family Research Laboratory, University of New Hampshire, Durham, NH 03824. See http://pubpages.unh.edu/~mas2/ for Related papers that can be downloaded. The work was supported by National Institute of Mental Health grant T32MH15161 and by the University of New Hampshire.
CORPORAL PUNISHMENT BY MOTHERS
AND CHILDREN'S COGNITIVE DEVELOPMENT:
A LONGITUDINAL STUDY OF TWO AGE COHORTS

ABSTRACT

We tested the hypothesis that use of corporal punishment (CP) such as slapping a child's hand or "spanking" is associated with restricted cognitive development among 806 children age 2 to 4 and 704 children age 5 to 9 in the National Longitudinal Study of Youth. The analyses controlled for ten parenting and demographic variables, including mother's supportiveness and cognitive stimulation, child's birthweight, age and gender. Children of mothers who used little or no CP during the two sample weeks gained in cognitive development relative to other children and this applied to both cohorts. The more CP experienced by a child, the more they fell behind in cognitive development. If these findings are confirmed by other research, and if programs to reduce use of CP are successful, there could be major benefits for children and society as a whole. These benefits are not limited to higher cognitive ability. Recent empirical research suggests that reduced CP is also associated with less juvenile delinquency and lower rates for a number of adult behavior problems.

Keywords: discipline, intelligence, IQ, parenting, child development, spanking, violence

* * * * * * * * * * * * *

The impetus for this study was research which found that talking to children, including infants, is associated with an increase in neural connections in the brain and in cognitive performance (Blakeslee, 1995; Dawson & Fischer, 1994). Those findings led us to theorize about the relation of corporal punishment (CP from here on) to cognitive development. We reasoned that, to the extent parents use CP such as spanking or slapping a child's hand for
touching a forbidden object, they are less likely to engage in cognitive methods of behavior control such as explaining to the child why the object should not be touched. Conversely, the less CP used by a parent, the more verbal interaction is needed to teach and correct the child, and the increased level of verbal interaction is known to enhance cognitive development.

In addition to restricted verbal interaction, CP could adversely affect cognitive development through other processes. Being slapped or spanked is a frightening and threatening event that children experience as highly stressful (Turner & Finkelhor, 1996). Fright and stress can result in cognitive deficits such as erroneous or limited coding of events and diminished elaboration (Heuer & Reisberg, 1992) Perry, 2006 #12662]. Moreover, to the extent that CP is experienced as stressful, it is a stress which, for many children, continues for several years. Those who defend CP typically approve of using CP between ages 18 months and eight years, and sometimes ages 2 through 6 (Friedman, Schonberg, & Sharkey, 1996). However, CP at these ages may undermine attachment and the bond between the child and the parent (Straus & Hill, In Press) and reduce a child’s motivation to learn from parents. Whatever the intervening processes, if CP influences cognitive development, it has broad implications because at least a third of American children experience CP as infants, 94% as toddlers, and for a third it continues into the early teen years (Straus & Stewart, 1999).

PREVIOUS RESEARCH

We found two studies that examined the relation of disciplinary practices to cognitive ability. Smith & Brooks-Gunn (1997) studied 715 low birth weight children. Discipline was measured at 12 and 36 months. The Stanford Binet intelligence test was administered at 36 months. They found that the children who experienced "harsh discipline" had the lowest IQ, even after controlling for birth weight, neonatal health status, ethnic group, mothers age, family structure, mother's education, and family income. One limitation of this study is that the harsh discipline measure included scolding the child, and therefore confounds verbal aggression by the parent with CP. Another limitation is that there was no Time 1 (T1 from here on) measure of
cognitive ability.

Fower and Chapieski (1986) compared 14 month old children of upper middle class mothers who relied on CP with children whose mothers rarely or never used CP. The dependent variable was score on the Bayley infant development scale at 21 months. The children whose mothers relied on CP had Bayley test scores that were exactly at the average for the US (100), which is consistent with the fact that almost all parents hit children this age (Straus & Stewart, 1999), whereas the cognitive development of the small proportion of children whose mothers rarely or never used CP, averaged 20 points higher than the US average. A limitation of this study is that the adverse effect was shown only for children of mothers who relied on CP. Consequently, it does not provide information on whether using CP as only a rare back up has an adverse effect on cognitive development.

In addition, there are two studies that, at least indirectly, are consistent with the theory that CP interferes with cognitive development because they found CP to be related to characteristics that are related to cognitive ability. A study of a nationally representative sample of U.S. adults used recall data on CP to examine the relation of CP to educational attainment (Straus & Mathur, In Press). This study found that, even after controlling for the education and occupation of the respondent's parents and other potential confounds, the more CP experienced, the lower the percentage who graduated from college. Another similar study, but using a different national sample with similar controls, found that the more CP, the lower the probability of the respondent being in the top fifth of the occupational and income distribution for the U.S. (Straus & Gimpel, 1994).

A meta analysis by Paolucci and Violato (2004) examined analyzed 16 studies which tested the relation of CP to a variety of cognitive measures. No additional studies of cognitive development were cited. Although the number of studies is limited, and each of those described above have limitations, all provide evidence that is consistent with the idea that CP is associated with slower cognitive development.
Our theoretical speculations about the processes that could explain why CP results in restricted cognitive development, and the findings of the four studies just reviewed, led to the following hypothesis:

1. When analyzed cross-sectionally, the more CP used, the lower the average cognitive ability relative to other children of the same age.

2. When analyzed developmentally, use of CP is associated with an average decrease in cognitive ability relative to other children of the same age.

METHOD

Sample

The sample was drawn from women who were first interviewed in 1979 as part of the National Longitudinal Survey of Youth (NLSY) conducted by the Ohio State University Center for Human Resource Research. This study included an oversample of low income and minority youth. A complete description of the sample is in Baker, Keck, Mott, and Quinlan (1993). Weights provided by the NLSY can be used to compute descriptive statistics that are nationally representative estimates. However, the focus of this study is a multivariate analysis of relationships between variables. Consequently, we followed the recommendation in the NLSY Child Handbook that, “…if one is to estimate a regression or similar model, weights probably should not be used…” (Baker et al., 1993, p. 30).

At the start of the study in 1979, the women were age 14 to 21. Starting in 1986, those who had children were interviewed periodically about child rearing practices and child behavior and their children were tested.

Our research was originally based on data for 806 children who were age 2 to 4 (24 to 46 months) at the time of the 1986 survey and for whom all the relevant data was available. We studied children age 2-4 because use of CP is sometimes declared to be acceptable only for young children, for example ages 2 to 6 (Friedman & Schonberg, 1996). In addition, the theory underlying this study is most applicable to young children because development of neural
connections is greatest for infants and toddlers. We also chose children this young because, on
average, they would have had fewer non-family experiences that could be related to cognitive
ability (e.g., school experiences) than older children. Finally, we wanted to minimize the number
of children born to very young mothers. By choosing children age 2 to 4, the average age of the
mothers at the birth of the child was 21 (SD 2.6). However, after presenting a preliminary paper
on the younger children we realized that we could replicate the test of the hypotheses with a
second age cohort of children age 5 to 9 at the T1 year because many parents continue CP into
this age range (Straus & Stewart, 1999).

(Insert Table 1 about here)

The 1,510 children in the study were those with no missing data on any of the variables
needed for this study. To assess potential selection biases, we compared these 1,510 cases
with the 1,890 who did not have complete data on 12 characteristics that might be related to CP
and cognitive ability. Table 1 shows that there were significant differences for four variables.
The cases with complete data included slightly fewer white children, fewer mothers who had not
completed high school, fewer single-parent families, and a had a higher mean birthweight. In
view of the fact that the NLSY oversampled minority and low-income mothers, this comparison
suggests that, except for race, our study sample is demographically more similar to the general
population of 2 to 9-year-old children than the full NLSY sample. To the extent that this is
correct, the findings of this study may be more representative of the national population of 2- to
4-year-old children than they would with the original NLSY sample.

Measures

Cognitive ability. Cognitive ability was measured at T1 using as many of the following
tests as were available for each child: Body Parts Recognition, Memory for Locations, and
Motor and Social Development. The T2 cognitive ability measure, was the Peabody Individual
Achievement Tests (PIAT) for Math, and Reading Recognition (48-95 months) in 1990 (see
(Baker et al., 1993) for information on these tests).
The cognitive ability measures were age-normed and standardized by (1) identifying subsamples of children in 3-month age bands, (2) transforming the raw scores for each 3-month age group into z scores, and (3) transforming the z-score for children of each 3-month age band into standard scores with a mean of 100 and a standard deviation of 15. This creates scores that are consistent with the conventions for scoring many cognitive development and intelligence tests. The standardized scores were the mean of the number of cognitive assessments completed by each child. The resulting scores indicate how far above or below the mean level of cognitive ability each child is relative to other children of approximately the same age. As result of these procedures, the mean cognitive ability scores were approximately 100 at both T1 (100.9, SD=14.4) and 1990 (101.1, SD=15.0).

Corporal punishment. We define CP as an act carried out with the intention of causing a child to experience physical pain, but not injury, for purposes of correction or control (Straus, 2001a). CP was measured for two sample weeks in 1986 and 1988 using two types of data. The first is observation by the interviewer of whether the mother spanked or hit the child during the course of the interview. The second was two interview questions: "Did you find it necessary to spank your child in the past week?" Mothers who said they had spanked were asked: "About how many times, if any, have you had to spank your child in the past week?" We used these data to create a CP scale that combined the observed and the interview measures for 1986 and 1988. If the mother was observed using CP, it was counted as one instance of CP in addition to any that the mother reported as having occurred in the past week. Next, we grouped the children into four categories: those who experienced no CP in either of the two weeks, and those who experienced either one, two, or three or more instances.

We measured CP during two sample weeks in order to identify children who experienced as close to no-CP as is possible with this data. The fact that a score of zero identifies children who were not spanked in either of the two sample weeks over a 2 year time span, makes it plausible to consider the zero group as children for whom CP was extremely rare or in some
cases, nonexistent. Nevertheless, in the light of the extremely high intervention rates needed to properly supervise toddlers (once every 6 to 10 minutes) (Fower & Chapieski, 1986; Lee & Bates, 1985; Minton, Kagan, & Levine, 1971), there were innumerable opportunities for the mothers to use CP as one of the disciplinary tactics, and about as another national survey found, 94% of parents use CP with toddlers (Straus & Stewart, 1999). Thus, the CP scale used for this study does not eliminate the possibility that the children in the zero category experienced CP on rare occasions.

The interview questions for this study asked the mothers about "spanking" and did use the term "corporal punishment." This reflects American usage in which "spank" is used for both the specific act of hitting child on the buttocks and in the more general sense of hitting the child in other places (Giles-Sims, Straus, & Sugarman, 1995). For the most part, this article uses the term "corporal punishment" but from time to time we also use "spank" and "hit" as synonyms.

Maternal cognitive stimulation and emotional support. The measures of maternal cognitive stimulation and emotional support in the NLSY data set are subscales from the HOME-SF (Home Observation for Measurement of the Environment -- Short Form) inventory, which includes age appropriate subscales for children of different ages (Caldwell & Bradley, 1984). A review by Baker et al (Baker et al., 1993) of the extensive methodological analyses of these scales as applied to the NLSY (including confirmatory factor analyses, item analyses, and repeated measurements analyses), indicates that the cognitive stimulation and emotional support scales are internally consistent, temporally stable, and predictive of a variety of child outcomes, including cognitive development.

The cognitive stimulation subscales included 9 items for children age 0-2 years and 15 items for children 3-5. Examples of cognitive stimulation items are: whether the mother read to the child, whether the mother helped the child learn colors, numbers, shapes or the alphabet; and how many books the child had of his or her own. The emotional support subscales included 9 items for children 0-2 year and 12 items for children 3-5. Examples of emotional support...
items are: how often the child had dinner with both parents, whether the mother caressed or kissed the child, and whether the mother’s voice showed positive feeling toward the child. The cognitive stimulation and emotional support items were scored by the NLSY as dichotomous indicators (0=absent, 1=present). Raw scores were computed by summing the items.

We modified these scales in two ways. First, the emotional support scale provided by the NLSY included the CP variables. We therefore recomputed the emotional support raw score without the CP items. Second, the raw scores for each age group were standardized as ZP scores (a ZP score is a version of a Z score with a mean of 50, a standard deviation of 20, and a range of zero to 100. See Straus, 1980).

Mother's education. The highest school grade completed by the mother was included in the analysis as a proxy for family socioeconomic status and because it is known to be related to child’s cognitive ability (Neisser et al., 1996). We originally considered creating a composite scale to measure SES that would include mother’s occupation and net family income. We decided against this because mother’s occupation was so strongly associated with mother’s education that it appeared to be a redundant measure, and because net family income was not associated with either mother’s education or occupation, perhaps as a result of over sampling families of low income and non-white ethnicity.

Other control variables. The NLSY data permitted analysis of other child, mother, and family characteristics that could be associated with both CP and cognitive ability and therefore need to be controlled. These are child’s birthweight, child’s age, child’s ethnicity, child’s gender, number of children of the mother in the home, mother’s age at child’s birth, and father presence in the home at T1. Descriptive statistics for these variables are given in Table 1.

Data Analysis Strategy

Preliminary explorations and analyses. We examined the frequency distributions of the cognitive ability measures for deviation from normality and outliers. Both the T1 (1986) and T2 (1990) distributions were approximately normal, but there were a few outliers (defined as cases
more than three standard deviations above or below the mean and discontinuous). These cases were recoded to values just beyond the closest non-outliers case.

Bivariate analyses. We computed zero-order correlations between CP, cognitive ability, and all of the other study variables to assess the construct validity of some of the measures and to identify high correlations that might cause a multicollinearity problem in the multiple regression analyses.

Multiple regression. The hypothesized adverse effect of CP on subsequent cognitive development was tested using OLS regression. The first model examined the relation of CP and cognitive ability at T1 to cognitive ability at T2. The following ten child and family and child characteristics were included in the model because they might confounded with CP and cognitive ability: child’s birthweight, gender, age, and ethnic group (2 variables: African American versus other, Hispanic American versus other); mother’s age at birth of child and education, cognitive stimulation and emotional support by the mother, and number of children at home whether the father was present in the home at T1.

Tests for interactions. An important issue in research on the effects of CP is the role of contextual factors such as the extent to which parents provide emotional support and cognitive stimulation; and the socioeconomic characteristics of the family such educational level, ethnic group. There is evidence, for example, suggesting that in the context of African American culture and life circumstances, CP may not have adverse effect (Deater-Deckard & Dodge, 1997; Gunnoe & Mariner, 1997). We therefore estimated a third model which included variables for the interaction with CP of maternal cognitive stimulation, emotional support, and education, and African American versus other ethnic groups. However, because of multicollinearity (as evidenced by a fourfold increase in the standard error for CP), none of these interactions were significant. To avoid multicollinearity, we estimated a series of regression models, one for each of the interactions of CP with each of the independent variables. Each of these models included a term for the interaction of CP with one of the other independent
variables, and also the 13 independent variables included in the original full model.

CP by age ANCOVA. We also computed an analysis of covariance. One of the purposes was to examine the adjusted mean change in cognitive ability of children in each of the four CP categories, starting with those who experienced none in the two sample weeks. Another purpose was as a check on the robustness of the regression analysis. This was important because the independent variable was a four category ordinal measure of CP, not a continuous variable as assumed by OLS. Finally, the ANCOVA facilitated examining interaction effects because the output plotted the mean scores for each value of the moderator variables. One of the most important interactions tested was for the age of the child. The importance stems from the belief that CP is acceptable for younger children, or at least not harmful for young children (Friedman & Schonberg, 1996; Gunnoe & Mariner, 1997). To do this, we used a 4 by 2 design which crossed the four CP categories variable by the two age groups. The analysis included the same covariates as were used for the multiple regression analysis.

RESULTS

(Insert Table 2 about here)

Prevalence and Chronicity of Corporal punishment

Table 2 shows the high prevalence of CP in this sample at T1. The first row shows that only 6.7% of the 2-4 year old children were not hit at all in either of the two sample weeks; thus 93% were hit at least once in those two weeks. This is almost identical to the 94% of parents who reported hitting children in this age group in a 1995 national survey of American children (Straus & Stewart, 1999). The percent of 5-9 year old children who were not hit is much greater, but more than half (58.2%) were spanked in that period. The last row of Table 2 shows that, almost half of the 2-4 year old children were hit three or more times in those two weeks. As for the chronicity of spanking, mothers of children age 2-4 years who had spanked in the past week, did so average of 3.6 times that week. A third of the mothers spanked 4 or more times, and 12.8% spanked 7 or more times that week. The mothers of children age 5-9 who had
spanked in the past week reported doing so an average of 2.5 times that week. Moreover, we believe that, because CP is such a taken-for-granted event, parents do not realize how often they do it and these numbers are almost certainly lower bound estimates. One indication of the taken-for-granted nature of spanking children is that, among the children who were 26 months old at the T1, 18% of the mothers hit the child during the course of the interview.

Correlations Between Study Variables

(Insert Table 3 about here)

Table 3 gives the correlation of all the variables in this study with each other. The correlations in the lower left half of Table 3 are for the children age 2-4, and those in the upper right are for the 5-9 year old children. Many important relationships can be examined, but this discussion focuses on two issues of most interest in the context of this study.

CP and cognitive ability. The correlations of most interest are for the hypothesized negative correlation between CP and cognitive ability. The Rows 2 and 3 of column 1 in Table 3 show that at both T1 and T2 show the hypothesized significant negative correlations. The correlations for the 5-9 year old children in 2nd and 3rd columns of row 1 also are also negative and signification, but substantially higher. For both age groups, the lower correlation of CP with T1 cognitive ability probably occurs because of the low reliability of cognitive assessments at the younger ages (Neisser et al., 1996).

Emotional support, cognitive stimulation, and cognitive ability. The correlations in rows 4 and 5 with columns 2 and 3 in Table 3 show that emotional support and cognitive ability by the mothers at T1 are correlated with more cognitive ability of the children in both age groups. Because these are well established relationships, the correlations just mentioned show that, despite the presumed low reliability of early cognitive assessment, cognitive ability as measured in this study is associated with other variables in a theoretically and empirically expected pattern. These correlations can therefore be taken as evidence of construct validity of the measures used.
Corporal Punishment And Growth In Cognitive Ability

Low cognitive ability (i.e., a “slow” child) could lead parents to use more CP. If so, the correlations showing that the CP is associated with lower cognitive ability leave unanswered the question of which is cause and which is effect. We believe there is a bi-directional relationship. On the one hand, parents can be more likely to hit cognitively “slow” children than children with average or higher ability out of frustration in dealing with such children or out of disappointment and resentment. On the other hand, as pointed out earlier, children experience CP as highly stressful and stress is known to interfere with cognitive functioning and to results in changes in brain functioning (Anda et al., 2006; Perry, 2006). Regardless of the mediating process, we hypothesized that CP slows the rate of further cognitive development, with the result that four years down the road, the children who were hit by their parents may fall behind the average even more. To test this, it is necessary to have data which show that CP is associated with change in cognitive ability, and specifically, the more CP experienced, the slower the rate of cognitive development. Multiple regression was used to provide the data to test the change hypothesis because controlling for the T1 level of cognitive development means that the predicted T2 score (the dependent variable) is the difference between the T1 and T2 scores.

(The results of testing this hypothesis are presented in Table 4 and Figure 1. The regression coefficients in the first row of Table 4 show that each increase of one unit in the four category CP scale is associated with a decrease cognitive ability relative to other children of 1.3 points for children age 2-4 and a decrease of 1.1 points for children age 5-9. These are statistically significant but not large decreases in cognitive ability. This does not mean that spanked children became less cognitively adequate. Rather it reflects the fact that that cognitive ability was measured relative to the performance of other children of the same age. A cognitive ability score of 100 indicates a score at the mean for children of the same age. To maintain a score of 100 over a four year period, a child’s cognitive development must increase during those
years at the average pattern. Thus, the decreases associated with CP do not indicate an absolute reduction in cognitive ability, only that CP is associated with failing to keep up with the average pattern of cognitive development.

Figure 1, which is based on the analysis of covariance confirms the regression results and provides adjusted mean change in cognitive development for each of the four categories of CP. It shows that the children whose parents did not use CP in the two sample weeks (the “None” group at the left side of the Figure) gained in cognitive ability compared to children whose parents used CP. The 2-4 year old children who were not hit in either week gained an average of five and half points, and the 5-9 year old children gained an average of almost two points.

At the other extreme of the CP categories, the 2-4 year old children who were hit three or more times in the two sample weeks neither gained nor lost relative to the norm for children their age. This is consistent with the fact that they are the typical child in this age group (see Table 2 which shows that 48% of the sample were hit three or more times). Thus, 2-4 year old children who experienced three or more instances of CP were, in effect, the statistical norm for their age, and their cognitive development also followed the statistical norm, i.e. it stayed at the US average cognitive ability score of 100.

For children age 5-9, the statistical norm for CP was quite different. Instead of most children that age being hit three or more times in those two weeks, as was true of the younger children, “only” 15 percent of the 5-9 year old children were hit three or more times in those two weeks. Still, the majority of children in the 5-9 year age group (58%) were hit at least once in those two weeks. The relation of CP to cognitive development was similar to the results for the 2-4 year old children: The cognitive development of the children whose parents did not use CP in either of the two sample weeks was greater than the children who were hit even once in those two weeks. They gained an average of almost two points. On the other hand the 5-9 year old children who were hit once neither fell behind nor gained compared to other children, i.e., their
score stayed at about 100. The 5-9 year old children who were hit two or more times in those two weeks fell slightly behind the average child in cognitive development in the four years following the initial testing.

Child and family characteristics linked to change in cognitive ability. This section will describe the other statistically significant relationships in Table 4. The second row of Table 4 shows, as expected, that higher cognitive ability at T1 was related to a more than average increases in child cognitive ability during the years from T1 to T2.

Row 3 of Table 4 shows that, for children of both age groups, maternal cognitive stimulation at T1 is associated with an increase relative to other child in cognitive ability, i.e. more than the average increase that occurs as children mature. The fourth row shows that, contrary to our expectation, and contrary to the bivariate correlation analysis, when all the other variables in the model were controlled, material emotional support was not related to change in cognitive ability.

Row 8 of Table 4 shows that children of African American mothers fell behind children of other race/ethnic groups between T1 and T2, but this was statistically significant only for children who were 5-9 at T1.

Row 10 shows the more children in the home is associated with falling behind peers in cognitive development, and that this applies to both age cohorts studied.

Row 11 shows that for the 2-4 year age group, each additional year in the age of the mother was associated with the child gaining 0.75 cognitive ability points more than the average of other children in the study. For children who were age 5-9 at T1, there was no effect for mother's age.

Rows 12 and 13 show no significant relationship of two variables we expected to be related to cognitive development, and which are significant at the bivariate level: mother's education and presence of a father in the household. This suggests that the effect of those two variables is mediated by the other variables in the model, such as cognitive stimulation.
In addition to what the coefficients in Table 4 tell us about cognitive development, they are also important from a methodological standpoint because, since they are consistent with much other research on cognitive development, they provide support for the construct validity of the measure of cognitive stimulation and cognitive ability.

Relative effect of CP compared to other maternal behaviors. The standardized coefficients in the Beta column of Table 4 allow comparing the relative effect of CP and the other two maternal behaviors (cognitive stimulation and emotional support). For children of both age groups, mother's emotional support at T1 is not significantly related to cognitive development at T2. For children age 2-4, cognitive stimulation has the largest effect on T2 cognitive ability, followed by CP. For children aged 5-9, CP has the largest relation to cognitive ability at T2, but it is only slightly greater than the effect size for cognitive stimulation. Thus, after controlling for other maternal behaviors and the demographic characteristics in Table 4, CP is independently related to a decrease in cognitive ability relative to other children, and in the case of children age 5-9, CP has the largest effect size.

Does the harmful effect of CP depend on the social context? As noted earlier, there are theoretical and empirical grounds for expecting that the effect of CP depends on the presence or absence of other variables; or as it is sometimes put, the effects of CP may be "context specific." We have already seen that the age of the child makes a difference. CP has a stronger relation to cognitive development of toddlers than of school age children. We examined each of the other child and family characteristics to see if they reduced or exacerbated the relation of CP to cognitive development. No significant interactions were found. Thus, none of these characteristics moderated the tendency for CP to be associated with slower cognitive development. This does not mean that they made no difference. For example, children whose mothers were at the 80th percentile in providing cognitive stimulation had significant higher cognitive ability, and children of African American mothers had considerably lower cognitive ability scores, but for children of high cognitive stimulation mothers and for children of African
American, the relationship between CP and cognitive development was not significantly different than for children who experienced low cognitive stimulation and for children of Euro American mothers.

Is "just once" harmless? Defenders of CP believe that CP is harmless if done only rarely. They do not indicate how often “rarely” is, so their belief cannot be tested exactly. For this study, the best approximation to “only rarely” was CP only once in the two sample weeks because only 10.5% were spanked this rarely. We compared the 6.6% of the children who were not hit at all during the two sample weeks with the 10.5% who were hit only once, and also with those hit twice, and three or more times. The cognitive development of children of mothers who hit them even once in these two weeks was slower than the development of the children whose mothers did not hit them at all, but the difference was just short of being statistically significant (contrast estimate – 2.48, p .062). Separate tests for the two age groups found similar results for 5-9 year old children (contrast estimate –2.135, p .057), but a p of .267 for the 2-4 year old children. The lack of significance among the 2-4 year old children despite the large difference between the none and the Once group probably reflects the small n in the None category -- only 57 of the 806 children that age experienced no CP in those two weeks. We also tested the difference between Once and Twice and found a significant decrease for both age groups (-3.154, p, 03 for age 2-4; –2.270, p. 023 for age 5-9).

DISCUSSION

This study investigated the extent to which mothers used corporal punishment (CP) on a national sample of 806 children age 2 to 4 and 704 children age 5 to 9 and tested the hypothesis that CP experienced by these children is associated with slower cognitive development over a 4 year period.

Corporal Punishment

Prevalence of corporal punishment. Ninety three percent of the mothers of children age 2-4 and 58% of mothers of children the 5-9 group used CP in the two week referent period.
These prevalence rates are consistent with another national survey which found that 94% of parents hit toddlers (Straus & Stewart, 1999), and with many other studies over the 50 year period since Sears, Maccoby, & Levin (1957) found a rate of 99% and Bryan and Freed (1982) found that 95% of a sample of community college students had experienced CP. Numerous other studies (e.g., Giles-Sims, Straus, & Sugarman, 1995; Goodenough, 1931 (reprint 1975); Holden, Coleman, & Schmidt, 1995; Straus, 1994a; Wauchope & Straus, 1990) also show extremely high rates of CP. CP therefore appears to be a near universal aspect of the early socialization experience of American children, although to widely varying degrees in individual cases.

Chronicity of corporal punishment. Among those who used CP, it occurred an average of 3.6 times per week. This figure is consistent with the mean of 2.5 per week for toddlers found by Holden, Coleman, & Schmidt (1995), provided one takes into account that Holden et al. studied college educated mothers who tend to use less CP than mothers with less education (Day, Peterson, & McCracken, 1998). If the mean of 3.6 per week is extrapolated to a year, it results in an estimated 187 instances per year. This is at least 10 times higher than the mean number of times based on studies that used a one year recall period (Straus & Mouradian, 1998; Straus & Stewart, 1999). We suggest that the much lower chronicity of CP in studies that use a past-year recall period occurs because, for many parents, CP is such an everyday and taken-for-granted occurrence that parents do not realize how often they have done it. This interpretation is consistent with findings from a pioneer study by Goodenough (1931/1975) which found that when mothers used a diary to record their disciplinary tactics, the chronicity of CP was six times greater than when the figure was based on recall during an interview.

Do the mothers in this study represent an abnormal extreme of CP? We described how much CP was used by the mothers in this sample and cited other studies which found similarly high level of CP because we believe that the public and most service providers and social scientists do not realize the high prevalence and chronicity of CP in the lives of American
children. This may be part of the reason content analyses of child development text books found in the 1980’s, 1990’s and 2000’s found that, on average, the books devoted less than a page to this important aspect of the socialization of American children (Straus & Stewart, 1999). We suggest that misperception of the extent of CP is an example of "selective inattention" (Dexter, 1958) by members of a society in which CP is the statistical and cultural norm (Straus & Mathur, 1996). Selective inattention may be one of the mechanisms which enables our society to continue to support CP because it avoids the necessity of facing up to the fact that almost all children are hit, and many are hit frequently. Without the information on prevalence and chronicity, the results on the effects of CP in the two one-week periods could be dismissed as applicable only to an atypical high spanking parents. Indeed this was precisely the reaction to a previous study of NLSY children (Ambati, Ambati, & Rao, 1998).

Variation in corporal punishment. Despite the extremely high prevalence and chronicity of CP, there is still great variation in the amount of CP experienced by American children. In this sample, the 93% prevalence rate for children age 2-4 at T1 means that during the two week referent period, 17% of parents did not hit their child; and among those who did hit that week, a fifth did it once. At the other end of the distribution, 12.8% of the mothers of 2-4 year old children spanked 7 or more times that week, which one can think of as children who experienced CP every day.

Although almost all American children experience at least some CP, the differences in how often mothers use CP provided sufficient variance in CP to test the hypothesis that the more CP experienced by a child, the slower the child’s cognitive development. The results from multiple regression and analysis of covariance were consistent with the hypothesis. We found that 2-4 year old children who experienced no CP in either of the two sample weeks gained a mean of 5.5 cognitive ability points on a scale with a mean of 100 and a SD of 15, and children in the 5-9 year age group whose mothers did not use CP in either week gained a mean of about 2 points relative to children whose mothers used CP. Conversely, For the 5-9 year old children,
CP was associated with a decrease from T1 to T2 in cognitive ability test score. These results are consistent with the two previous studies of the relation of CP to cognitive ability (Fower & Chapieski, 1986; Smith & Brooks-Gunn, 1997), and with the results of studies which examined the relationship of CP to educational and occupational achievement (Straus & Gimpel, 1994; Straus & Mathur, In Press).

The analysis controlled for ten other variables, including mother’s education, cognitive stimulation, and emotional support, and several demographic variables. The significant net effect of CP is remarkable in view of the fact that so many variables were controlled. In addition, the results of our analysis are probably minimum estimates because of the relatively low reliability of cognitive testing of children as young as those in this sample at T1.

Contextual effects. The question of whether there are circumstances or contexts that make the use of CP appropriate has been the subject of much debate. Given the debate and theoretical importance of contextual effects, we tested the interaction of CP with ten variables that can be considered contextual effects, such as the mother’s supportiveness, cognitive stimulation, and education, and African American ethnic group. The lack of a significant interaction of CP with maternal supportiveness, cognitive stimulation, or race/ethnic indicates that the relation of CP to reduced cognitive development may apply even when done by loving and attentive parents, and even which it occurs among a sector of the population with cultural norms that approve CP. However, there are other aspects of parent-child relationships and mode of discipline that were not part of this study and which need to be considered in future research. For example, none of the conditions that Baumrind believes are needed for CP to be appropriate were tested, i.e. that, CP must be "controlled and contingent on the child's behavior; the child is forewarned; the parent uses more positive than negative incentives; spanking is carried out in conjunction with reasoning, with the intention to correct, not retaliate, and does not escalate to abuse" (Baumrind, 1996: 857).

Limitations
Although we studied a large and nationally representative sample of children, and controlled for many potential confounds, and examined many contextual effects, there are important limitations to keep in mind.

Corporal punishment is confounded with more severe and non-normative assaults on children called "physical abuse" because parents slap and spank may also engage in severe assaults. Although the adverse effect of CP on cognitive development might be driven by that confound, a previous study found that only a tiny proportion of American parents who use CP on toddlers engaged in severe assaults, making this possibility less likely. Moreover, in previous research, where there data was available to screen out abusing parents, the adverse effects of CP remained after those cases had been removed (MacMillan et al., 1999; Straus, 2001a, Chapter 8).

When considering the implications of the findings for parents and for social policy, the relatively small effect size needs to be kept in mind. A small effect size for one variable is consistent with a multiple cause theoretical perspective which assumes that CP is only one of many variables affecting cognitive ability. Nevertheless, if future studies confirm these findings, it means an average gain of about five points. At the individual level, a five point gain in a 100 point cognitive ability test is not a major difference. However, for the national as whole an average gain of this size can be extremely important. It is a well established principle in epidemiology that reducing a widely prevalent risk factor with small effect size, e.g., spanking, can have a much greater impact on public health than reducing a risk factor with a large effect size, but low prevalence, such as physical abuse (Rose, 1985; Rosenthal, 1984) (p.131).

There are also important limitations to the CP scale. One problem is that the mother and the observer were asked about instances of "spanking." Consequently the measure includes anything the observer or the mother might mean by spanking. Another problem is that that the children who were not spanked in either of the two sample weeks group could have been spanked in the other 50 weeks of the year. Consequently the claim that CP, when used only
rarely and as a back-up for other disciplinary strategies, is an acceptable disciplinary technique (Friedman & Schonberg, 1996) might apply to children who experienced no CP in either of the two sample weeks. However, Straus and Mouradian (1998) were able to identify a never-spanked group. They found that this group, rather than being "kids running wild," had the lowest antisocial behavior score.

Part of the theoretical basis for expecting "never-spanked" children to have the highest cognitive development is the assumption that parents who use little or no CP are more likely to use reasoning and explanation to secure compliance. The negative correlation between CP and cognitive stimulation in Table 3 is consistent with this theory, but a direct test using measures of reasoning and explanation is needed.

The measurement of parent behavior also has limitations. No data on the behavior of the fathers is available for these children. The measure of the mother's emotional support is minimal. That is an important limitation because of the theory that CP is not harmful if done in the context of loving and supportive parenting. Perhaps, use of an instrument such as the Dimensions of Discipline Inventory (Straus & Fauchier, 2007) which enables a more comprehensive assessment of discipline, including five non-punitive methods and the ratio of punitive to positive methods of discipline, CP would be found to have no negative effects.

Implications For National Level Of Cognitive Ability

A review of data on cognitive ability found an increase in scores on many different intelligence tests in a number of countries (Neisser, 1997). The evidence compiled by Neisser leaves little doubt that intelligence test scores have been increasing, and that the increase is not an artifact of the tests used. What is in doubt is why this has occurred. Neisser identifies a number of plausible contributing factors. For example, there is abundant evidence that children of educated parents obtain higher scores on intelligence tests (Neisser et al., 1996). Since the level of education of parents has been increasing world-wide, this is likely to be an important
part of the explanation. Another strong possibility is that nutrition levels have been improving because better nutrition is associated with greater cognitive ability (Rizzo, Metzger, Dooley, & Cho, 1997).

Reductions in use of CP and their replacement by cognitive forms of correction might also explain part of the world-wide increase in IQ. When parents lessen use of CP, we suggest that they tend to use more cognitive methods of correction and that they tend to also shift from the idea that children should be seen and not heard to encouraging independent exploration, and emphasizing reasoning and explanation, rather than the fear of being spanked, as the reason the child should engage in socially appropriate behavior. If this theory is correct, and if, as we believe to be the case, there has been a world-wide decrease in spanking and other forms of CP, that decrease could have contributed to the world-wide increase in scores on cognitive ability tests. The 1979 Swedish no-spanking law (Durrant, 1999) provides an example of a non-punitive methods a nation can use to reduce CP. To date 24 other countries have followed the Swedish example, and efforts are to ban CP are underway in a number of other countries. We plan to use a recently developed World Corporal Punishment Index (Straus & Medeiros, 2007) and other data to test the hypothesis that, after controlling for other variables which could affect cognitive ability (such as parent's educational level and level of economic development), nations with legal restrictions on use of CP and nations in which survey research shows low approval and low use of CP are also nations with higher cognitive ability scores.

Policy implications

Although parents of older children in the US now use CP much less frequently and for fewer years, almost all American parents continue to spank and slap toddlers (Straus, 2005; Straus & Stewart, 1999). There is a cruel irony to this because both the theoretical basis and the findings of this study suggest that it is precisely at early stages of development that avoiding CP may be most beneficial for cognitive development. Moreover, it is even more ironic that most defenders of spanking have reformulated their position to oppose CP of older children and
accept spanking of toddlers (Friedman & Schonberg, 1996) because that is precisely the age
group this study suggests is most vulnerable to adverse cognitive effects. If our findings are
confirmed by other studies, media and educational programs explicitly focused on not hitting
toddlers and making clear the benefits of avoiding CP could help bring about a reduction in CP
and a national enhancement of cognitive ability. Moreover, the potential benefits are not limited
to enhanced cognitive ability. Results from four other recent longitudinal studies (summarized
in Straus, 2001b) and from older cross-sectional studies summarized in a meta analysis of 88
studies (Gershoff, 2002) suggest that the benefits of reduced CP are likely to include reductions
in juvenile delinquency, adult violence, masochist sex, and a greater probability of completing
higher education, higher income, and lower rates of depression and alcohol abuse.
Figure 1, The More Spanking, The Lower The Child’s Cognitive Ability Score Four Years Later.

Change in Cognitive Ability Score

Number Of Times Spanked

None Once Twice 3+

Age 2-4 Age 5-9
Table 1. Sample Characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Study Sample (N=1510)</th>
<th>NLSY 2-9 Year Olds (N=3481)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child's birthweight (mean ounces)</td>
<td>115.7 (20.0)</td>
<td>114.6 (20.9)</td>
</tr>
<tr>
<td>Child's age (mean years)</td>
<td>4.6 (2.0)</td>
<td>4.7 (2.1)</td>
</tr>
<tr>
<td>Female children</td>
<td>49.5%</td>
<td>49.6%</td>
</tr>
<tr>
<td>Euro-American children</td>
<td>44.6%</td>
<td>47.6%</td>
</tr>
<tr>
<td>African-American children</td>
<td>36.9%</td>
<td>32.7%</td>
</tr>
<tr>
<td>Hispanic children</td>
<td>18.5%</td>
<td>19.7%</td>
</tr>
<tr>
<td>Number of children in home</td>
<td>2.3 (1.1)</td>
<td>2.2 (1.1)</td>
</tr>
<tr>
<td>Mother’s age at birth of child (mean years)</td>
<td>20.2 (2.5)</td>
<td>20.1 (2.5)</td>
</tr>
<tr>
<td>Mother’s education:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< high school</td>
<td>33.5%</td>
<td>41.9%</td>
</tr>
<tr>
<td>high school</td>
<td>47.9%</td>
<td>42.0%</td>
</tr>
<tr>
<td>> high school</td>
<td>18.6%</td>
<td>16.0%</td>
</tr>
<tr>
<td>Father living with mother</td>
<td>58.2%</td>
<td>53.8%</td>
</tr>
</tbody>
</table>
Table 2. Corporal Punishment Descriptive Statistics

<table>
<thead>
<tr>
<th>Corporal Punishment Category</th>
<th>2-4 Year Olds (n=806)</th>
<th>5-9 Year Olds (n=704)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No CP in either week</td>
<td>6.6%</td>
<td>41.8%</td>
</tr>
<tr>
<td>Once</td>
<td>10.5%</td>
<td>19.2%</td>
</tr>
<tr>
<td>Twice</td>
<td>35.2%</td>
<td>23.9%</td>
</tr>
<tr>
<td>Three or more times</td>
<td>47.6%</td>
<td>15.2%</td>
</tr>
</tbody>
</table>
Table 3. Zero-Order Correlations Among Study Variables, by Age Group (2-4 Year Olds Below Diagonal, 5-9 Year Olds Above Diagonal)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporal Punishment</td>
<td>---</td>
<td>-.16**</td>
<td>-.21**</td>
<td>-.02</td>
<td>-.22**</td>
<td>-.04</td>
<td>-.21**</td>
<td>-.07*</td>
<td>-.10*</td>
<td>.11**</td>
<td>-.01</td>
<td>.14**</td>
<td>.008</td>
<td>-.01</td>
<td>-.05</td>
</tr>
<tr>
<td>Child's cognitive ability (T1)</td>
<td>-.10**</td>
<td>---</td>
<td>.68**</td>
<td>.21**</td>
<td>.23**</td>
<td>.12**</td>
<td>-.003</td>
<td>.02</td>
<td>.22**</td>
<td>-.13**</td>
<td>-.12**</td>
<td>-.19**</td>
<td>.15**</td>
<td>.28**</td>
<td>.11**</td>
</tr>
<tr>
<td>Child's cognitive ability (Time 2)</td>
<td>-.12**</td>
<td>.35**</td>
<td>---</td>
<td>.24**</td>
<td>.22**</td>
<td>.13**</td>
<td>-.01</td>
<td>.002</td>
<td>.23**</td>
<td>-.18**</td>
<td>-.06</td>
<td>-.24**</td>
<td>.14**</td>
<td>.24**</td>
<td>.09*</td>
</tr>
<tr>
<td>Maternal cognitive stimulation</td>
<td>-.08*</td>
<td>.31**</td>
<td>.28**</td>
<td>---</td>
<td>.18**</td>
<td>.06</td>
<td>-.29**</td>
<td>-.009</td>
<td>.21**</td>
<td>-.17**</td>
<td>-.05</td>
<td>-.21**</td>
<td>.25**</td>
<td>.32**</td>
<td>.12**</td>
</tr>
<tr>
<td>Maternal emotional support</td>
<td>-.15**</td>
<td>.23**</td>
<td>.22**</td>
<td>.35**</td>
<td>---</td>
<td>.12**</td>
<td>.05</td>
<td>-.05</td>
<td>.27**</td>
<td>-.26**</td>
<td>-.02</td>
<td>-.15**</td>
<td>.18**</td>
<td>.19**</td>
<td>.28**</td>
</tr>
<tr>
<td>Child's birthweight</td>
<td>-.05</td>
<td>.06</td>
<td>.09**</td>
<td>-.003</td>
<td>.07</td>
<td>---</td>
<td>-.08*</td>
<td>-.15**</td>
<td>.28**</td>
<td>-.27**</td>
<td>-.01</td>
<td>-.04</td>
<td>.15**</td>
<td>.08*</td>
<td>.17**</td>
</tr>
<tr>
<td>Child's age</td>
<td>-.39**</td>
<td>-.005</td>
<td>-.007</td>
<td>.14**</td>
<td>.09*</td>
<td>.01</td>
<td>---</td>
<td>-.03</td>
<td>-.11**</td>
<td>.10**</td>
<td>.005</td>
<td>.13**</td>
<td>-.37**</td>
<td>-.14**</td>
<td>-.16**</td>
</tr>
<tr>
<td>Gender (0=male, 1=female)</td>
<td>-.03</td>
<td>.11**</td>
<td>.06</td>
<td>.03</td>
<td>.02</td>
<td>-.11*</td>
<td>.02</td>
<td>---</td>
<td>.001</td>
<td>.01</td>
<td>.01</td>
<td>.03</td>
<td>-.06</td>
<td>-.06</td>
<td>-.01</td>
</tr>
<tr>
<td>Euro-American (0=no, 1=yes)</td>
<td>-.05</td>
<td>.29**</td>
<td>.23**</td>
<td>.23**</td>
<td>.19**</td>
<td>.12**</td>
<td>-.08*</td>
<td>-.01</td>
<td>---</td>
<td>-.70**</td>
<td>-.38**</td>
<td>-.11**</td>
<td>.20**</td>
<td>.12**</td>
<td>.26**</td>
</tr>
<tr>
<td>Afr. American (0=no, 1=yes)</td>
<td>.05</td>
<td>-.17**</td>
<td>-.15**</td>
<td>-.18**</td>
<td>-.23**</td>
<td>-.11**</td>
<td>.002</td>
<td>.006</td>
<td>-.67**</td>
<td>---</td>
<td>-.39**</td>
<td>.08*</td>
<td>-.18**</td>
<td>.04</td>
<td>.35**</td>
</tr>
<tr>
<td>Hispanic (0=no, 1=yes)</td>
<td>.005</td>
<td>-.17**</td>
<td>-.11**</td>
<td>-.08*</td>
<td>.04</td>
<td>-.02</td>
<td>.10*</td>
<td>.007</td>
<td>-.47**</td>
<td>-.34**</td>
<td>---</td>
<td>.04</td>
<td>-.03</td>
<td>-.21**</td>
<td>.13**</td>
</tr>
<tr>
<td>Number of children in home</td>
<td>.005</td>
<td>-.15**</td>
<td>-.21**</td>
<td>-.15**</td>
<td>-.13**</td>
<td>.003</td>
<td>.08*</td>
<td>.009</td>
<td>.07*</td>
<td>.05</td>
<td>.04</td>
<td>---</td>
<td>-.04</td>
<td>-.24**</td>
<td>.04</td>
</tr>
<tr>
<td>Mother's age at birth of child</td>
<td>.05</td>
<td>.03</td>
<td>.14**</td>
<td>.004</td>
<td>.06</td>
<td>.12**</td>
<td>-.27**</td>
<td>-.03</td>
<td>.18**</td>
<td>-.13**</td>
<td>-.06</td>
<td>.11**</td>
<td>---</td>
<td>.31**</td>
<td>.27**</td>
</tr>
<tr>
<td>Mother's education</td>
<td>-.02</td>
<td>.18**</td>
<td>.12**</td>
<td>.08*</td>
<td>.08*</td>
<td>-.02</td>
<td>.005</td>
<td>-.01</td>
<td>-.002</td>
<td>.01</td>
<td>-.01</td>
<td>-.17**</td>
<td>.11**</td>
<td>---</td>
<td>.10**</td>
</tr>
<tr>
<td>Father presence (0=no, 1=yes)</td>
<td>.04</td>
<td>.11**</td>
<td>.13**</td>
<td>.08*</td>
<td>.22**</td>
<td>.09*</td>
<td>-.13**</td>
<td>.001</td>
<td>.29**</td>
<td>-.38**</td>
<td>.06</td>
<td>.07*</td>
<td>.25**</td>
<td>.002</td>
<td>---</td>
</tr>
</tbody>
</table>

* = p < .05, ** = p < .01
Table 4. Multiple Regression to Assess the Relation of Corporal Punishment at Time 1 to Child Cognitive Ability at Time 2, by Age Group

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>2-4 Year Olds (n=806)</th>
<th>5-9 Year Olds (n=704)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Corporal Punishment Scale</td>
<td>-1.30 (.59) -0.08 -2.2*</td>
<td>-1.10 (.38) -0.09 -2.9**</td>
</tr>
<tr>
<td>2. Child’s cognitive ability (T1)</td>
<td>0.23 (.04) 0.22 6.1***</td>
<td>0.63 (.03) 0.62 20.9***</td>
</tr>
<tr>
<td>3. Maternal cognitive stimulation</td>
<td>0.11 (.03) 0.15 4.1***</td>
<td>0.06 (.02) 0.08 2.5*</td>
</tr>
<tr>
<td>4. Maternal emotional support</td>
<td>0.03 (.03) 0.05 1.4</td>
<td>0.01 (.02) 0.01 0.25</td>
</tr>
<tr>
<td>5. Child’s birthweight</td>
<td>0.04 (.03) 0.06 1.7</td>
<td>0.02 (.02) 0.03 0.88</td>
</tr>
<tr>
<td>6. Child’s age</td>
<td>-0.09 (.68) -0.01 -0.1</td>
<td>0.09 (.23) 0.01 0.41</td>
</tr>
<tr>
<td>7. Gender (0=Male, 1=Female)</td>
<td>1.28 (.96) 0.04 1.3</td>
<td>-0.37 (.81) -0.01 -0.45</td>
</tr>
<tr>
<td>8. African American (0=No, 1=Yes)</td>
<td>-1.60 (1.2) -0.05 -1.3</td>
<td>-2.10 (1.00) -0.07 -2.1*</td>
</tr>
<tr>
<td>9. Hispanic (0=No, 1=Yes)</td>
<td>-2.40 (1.3) -0.06 -1.8</td>
<td>-0.05 (1.2) 0.00 -0.1</td>
</tr>
<tr>
<td>10. Number of children in home</td>
<td>-2.30 (.50) -0.16 -4.8***</td>
<td>1.00 (.38) -0.08 -2.7**</td>
</tr>
<tr>
<td>11. Mother’s age at birth of child</td>
<td>0.75 (.23) 0.11 3.3**</td>
<td>0.09 (.23) 0.01 0.41</td>
</tr>
<tr>
<td>12. Mother’s education</td>
<td>0.11 (.14) 0.03 0.8</td>
<td>0.18 (.26) 0.02 0.69</td>
</tr>
<tr>
<td>13. Father presence (0=No, 1=Yes)</td>
<td>1.70 (1.1) 0.05 1.5</td>
<td>-0.52 (0.90) -0.02 -0.58</td>
</tr>
<tr>
<td>R²</td>
<td>0.22</td>
<td>0.50</td>
</tr>
</tbody>
</table>
* = p < .05, ** = p < .01, *** = p < .001
REFERENCES

Lee, C. L., & Bates, J. E. (1985). Mother-child interactions at age two years and perceived
Neisser, U. (1997). Rising scores on intelligence tests: Test scores are certainly going up all over the world, but whether intelligence itself has risen remains controversial. *American Scientist, 85*, 440-447.

