1. Primates review (not all of these topics may be covered each semester. Read carefully for this semester (Fall, 2007). Also don't just print the guide out without regard to the linked files and images.)

Hints- it will be useful to know the meaning of the following terms:


arboreal
...lives primarily in trees

terrestrial
...lives primarily on the ground

territorial
...defends its geographical region, independent of whether it flies, swings, walks, or slithers through that area


opposable thumb
...can be turned opposite the other fingers including pinky
(though some use the expression to refer to any thumb that can usefully touch any other finger.) Watch the videos for differences here.


dextrous
...possessing great dexterity, having nimble fingers...


mammal
… any of a class (Mammalia) of warm-blooded higher vertebrates that nourish their young with milk secreted by mammary glands, have the skin usually more or less covered with hair, and include humans
.

Below is a summary and review to an extent of what you should know something about.


2. Primates (Fall 07 revision) review & study guide)

(check the web version Tuesday for updates, before the exam next Tuesday, Oct. 02.  Essay questions will not be changed other than for clarification.)

A.         Characteristics of primates

See readings, Life in the Trees video notes for features - some general mammalian features, others unique primate features.

B. Distribution

With exception of humans, our immediate ancestor, their cousins like Neanderthals, and Japanese and other Asian macaques, virtually all primates are in the tropics --23.5 degrees off the equator.

C. Primate species other than apes

These have been particularly significant for various reasons.

Know some basic differences/similarities among prosimians, monkeys, and apes. Prosimians are more like the early primates. While monkeys are older than apes, they share many features. One notable exception is that most monkeys have tails; no ape has a tail. Baboons are African monkeys that have been viewed by some as interesting models for human evolution.

1.     Tarsiers, lemurs, lorises (Jay Leno star) -- all prosimians 2.    Baboons 3.    Other notable monkey species

a)    Capuchin (cebus), vervet, and rhesus (macaque) monkeys

Cebus and related squirrel monkeys are new world species with a reputation for being clever-- probably reflecting their relatively large brains.
Vervets are colorful, quite terrestrial African monkeys whose communication system is noted for its referential warnings of specific predators.
Rhesus monkeys gave us the RH- in the Rh blood factor and were among the monkeys used by Harlow in his attachment research.

D. Apes

1.     Gibbons (simiangs), orangs, gorillas, chimps (common & bonobo)

E. Hominoids

A broad category including existing apes, humans, and extinct ape and bipedal ancestors including "cousins" such as Neanderthals. See Table 1.1 in TO,)

3. Why study non-human primates?

A.         The circus factor -- they're interesting

B.          Models or stand-ins for humans

1.     Biology, medicine, psychology : (Yerkes (1916) early recognized the importance of non-human primates, apes in particular, as significant for research. He also saw their future as doubtful.) There are many issues about any model -- how appropriate?, cost, rate of development, and ethics.

C.          further our understanding of human nature?

From ancient times, humans have reflected upon themselves using animals as a mirror, pro and con. Notably not until recent times have the most similar primates, the apes, been available for either scientific, philophical and political reflection. Should we strive to be more or less like these animals? Of course what it's like to be these animals is a product of human imagination and reflect --not a given.

D.          Conservation

They are an important part of life on earth

E. (Who studies primates?)

Almost everyone! Naturalists, zoologists, biologists, anthropologists, paleontologists, psychologists, cognitive scientists, neuroscientists and even some linguists.

4. History

A.         Timeline of evolution

(I emphasized how great changes in geological time - changes in species, climate, geology, the human condition..... have occurred but to our personal experience things seem to change very little if at all and then rather slowly.)

B.          History of human reflection on ourselves

1.     Early Greek thoughts on human-animal relations 2.    Descartes and beginnings of modern science 3.    Discovery of great apes

a)    Tyson 1699 on the chimpanzee

(bonobos, circa 1925)

b)   Dutch writers on orangutans (1600s)

c)    Nineteenth century discovery of gorillas

(Mountain gorilla, 1902)

5. Evolution highlights

(see biographical sketches)

A.         Before Darwin

1.     Linnaeus (Carl von Linne (1707-1778)

Linne classified species on the basis of common morphology.

2.    Lamarck (1744-1829)

Species transformed from a common origin
The false belief that offspring could inherit acquired traits of parents is known as :"Lamarckism."

B.          Darwin and Wallace (1858)

1.     Variation and natural selection of inherited traits

While the idea of evolution of complex species from simpler ones was not new (read Darwin's grandfather, Erasmus, and Lamarck, for example), Wallace and Darwin were the first to really put together an account of how species may be transformed -- "descent with modification" EHE, p.9.There are 4 parts to their argument: variation, a struggle for existence, natural selection, and accumulation of favoured variants -- which over time produce different species.

2.    Widespread Lamarckism

C.          The end of Lamarckism and significance of culture

1.     Weismann (1834-1914) 2.    James Mark Baldwin (1861-1934)

Baldwin argued cultural artifacts might become part of an organism's inheritance through  the usual Darwinian processes of variation and selection.  No Lamarckian inheritance of acquired characteristics was needed. for example, human language might have shaped the evolution of the brain in that only children who caught on quickly survived to pass on their "language acquisition" talent genes.

D.          developmental timing of gene action

This is the idea that many of the differences among primates may result from different timing of the same genes in the course of prenatal and postnatal development. It offers an explanation of how very similar genotypes can produce quite different appearing and behaving phenotypes. The discussion in modern times has been in terms of mosaic evolution, regulatory genes, and heterochrony. Yet the observations that humans are more like fetal primates than other species is quite old. Much recent DNA research is directed at these old questions.

 

E.    additional ideas on evolution (EHE and notes)


fitness

(this is NOT necessarily related to size or physical strength but any trait that relates to the chances of one's genes increasing or decreasing in relative frequency in succeeding generations. Genes promoting a trait, e.g. body size increase, may enhance fitness in one environment (lots of food) but decrease fitness in another (little food supply).

1.    
mosaic evolution (parts of the whole can be more or less independently shaped by evolution)

2.   
heterochrony (means "differential timing" - in evolution, different parts of the whole may have different growth rates in different species.)

3.   
allometry (EHE, "scaling" p.42)

4.   
neoteny


"Paedomorphosis (retention of formerly juvenile characteristics by adult descendants) produced by retardation of somatic development. (Gould, 483)"
. Gould, 1977 says, p.365, "I believe that human beings are "essentially" neotenous...because a general temporal retardation of development has clearly characterized human evolution."

compare an infant chimp

with an adult!

Which is more human-like? Why? The answer can be seen in a comparison with the growth of human heads with the growth of a chimp head. -- from infants to adults in both species.

5.   
convergence and parallel evolution,


Similar forms can occur for a variety of reasons, e.g. dolphins and fish forms, various fins.

6.   
divergence, adaptive radiation


Initially similar forms can differentiate into many unique niches, e.g. mammal forelimb in bats, humans, and elephants.

7.   
the relationship between anatomy and behavior


How well can you relate form (morphology) to function (behavior)? Exceptions? What's would you predict from the presence of lots of cones in an animal's eye? Relatively large eyes? Forward facing eyes?
(See Nordby's autobiography "512notes")
What about gorilla canine teeth? what about genitals and sexual dimorphism?

Nothing is absolutely certain -- evolution theory predicts in general that form is related to function but chance can play a large role. And in mating, form may have no function other than being a preference of the opposite sex. (though there may be a deeper story underlying preferences.

8.   
synergy


This refers to continual interaction over time of various parts. For example a larger brain will affect all sorts of structures and behaviors -- the costs/benefits we discussed. Here is an example use of the term:

"I assume that major human adaptations acted synergistically throughout their gradual development. The interaction system of delayed development--upright posture--large brain is such a complex: delayed development has produced a large brain by prolonging fetal growth rates and has supplied a set of cranial proportions adapted to upright posture. Upright posture freed the hand for tool use and set selection pressures for an expanded brain. A large brain may, itself, entail a longer life span....This retardation interacted synergistically with other hallmarks of hominization--with intelligence (by enlarging the brain through prolongation of fetal growth tendencies and by providing a longer period of childhood learning) and with socialization (by cementing family units through increased parental care of slowly developing offspring...Gould, 1977, pp.399-400"

9.   
pre-adaptation (exaptation)


use of existing structure/behavior for novel use, e.g. cones enable reading though originally for foraging and depth perception.
the role of chance in evolution
while variation and natural selection are the systematic means by which species are transformed, not all transformations need be systematic. There was nothing 100 mya that predestined primate "dominance" -- just the principles of evolution operating in a very particular context with many other unique, unpredictable factors.

10. "bottlenecks" in evolution

The idea is that some event serves as a filter allowing only certain individuals (and their genes) to pass into the next generation. Climate, for example, is often mentioned in this context, e.g. that cold periods reduced populations dramatically, leaving only small numbers with traits to cope, to survive and pass on those traits. (Of course, luck may be a factor here too.) Bottlenecks are suspected when reduced genetic variability is observed -- as for example in human populations compared with chimpanzee genetic variability.

 

F.  Comparative psychology (people, apes & ideas)

1.     Yerkes

early advocate of primate research and conservation

2.    Thorndike

"law of effect" , trial and error learning, and one of first comparative experimentalists

3.    Kohler

Originated the idea of "insight" in opposition to trial and error.

4.    Harlow

"learning sets", attachment, and "mother love"

5.    Piaget

"genetic epistemology" and stages of development

6.    Home raised apes

a)    Kohts

Russian psychologist who also experimentally demonstrated very similar human-chimp color vision.

b)   The Kelloggs

c)    The Hayes

The Kelloggs and Hayes were families of psychologists who raised a chimp in their home, See video notes on Kelloggs.

G.         Contemporary primate studies

1.     Observation of primate societies

a)    Leakey's ladies

(1)                                      Goodall, Galdikas, Fosse

b)   Others of interest

(1)                                      Japanese primatologists
(2)                                      Strum's baboons

2.    Primate cognition

3.    Communication in "human-based codes"

6. Research methods

analysis and comparisons of

A.         Fossils

1.     Sampling and statistics

B. Morphology (body statistics and correlations)

Allometric relationships

C. DNA patterns

D. natural behaviors

E. Experimental studies

F.  Convergence with other evidence

Artifacts, geological events, climate changes, etc.

7. The primate Body: locomotion, limbs, senses, brain, reproduction

A.         The generalized primate model

All primates are derivations from this basic model
Each species has its own unique features reflecting their evolutionary history over the past 60 million years.
Hominoids -- apes and humans -- share much of this history.

1.     Common features

2.    Differences due to habitat, diet, social/sexual environment ..

B. Locomotion and limbs

1.     Arboreal and terrestrial adaptatons

a)    climbing

b) swinging through trees like orangs

c)   bipedal walking

(how might swinging (b) adapt an organism for c?)

2.    hands and feet adaptations

compare the feet -- same plan but notable differences reflecting specific locomotion adaptations.  Similar, though lesser, changes occur in forelimbs.

a)    corresponding CNS changes controlling hands/feet

3.    head, shoulders, spine, pelvis, knees

4.    blood pressure and bipedalism

C. senses

1.     functions of senses

2.    common primate features

the sensory-motor homunculus
Reduced olfactory sense
Enhanced visual capacity- depth, color, balance and motor co-ordination

3.    any species unique sensory features?

Human eye-hand coordination?
Hearing and vocalization adaptation

olfactory sense and pheromones?

D. The primate brain - an expanded mammal brain

See the development of mammal brains.

1.     Increasing absolute and relative size

The combined sensory-brain enables the organism to model that environment with an internal representation. This in turn enables prediction and control of future events.

2.    Mosaic adaptations and implications of those for behavior

A common mammal sensory-motor "homunculus", modified for each species. See human model.

 

Each species has its own modifications -- recall Limber's puppet metaphor. The brain space devoted to an external body part corresponds to the amount of information required to control movements of those parts

(much space devoted to vocal tract, hands with human foot less than 1/2 the space of those hands. Imagine differences between monkeys with prehensile tail and those without.)

Increase in visual capacity, declining olfactory capacity.

Increased control of timing of movements (think of the puppet metaphor -- making it tie its shoes or say "hello")
Increased laterality of function (Gazzaniga's "interpreter")- humans are unique in extent of "handedness" ~90% right handed. Some animals show preference in specific tasks but not to the extent of humans as far as I know.
Language and memory enhancements in humans

Longer exposure to environment while developing because of 1) premature birth and 2) longer juvenile period. This allows for greater impact of environment culture and specific learning on the actual "building" of the brain itself.

Synergistic effects of larger brain, costs and benefits, implications for diet, birth and mothering, social structure and culture.

Summary of comments on development of the brain.

E. Primate reproduction

Primates carry on all mammal reproductive traits.  Primate infants are relatively helpless, highly dependent on their mothers.  Reproduction is relatively slow, one at a time with several years between births (depending on species).  Mothers (except humans) give birth by themselves and must pick up the infant who can cling to mom who must  forage for both of them.   Apes show much  variability in mating and sexual activities as well as social organization.  Much of this is probably due to variability in diet and food availability. In humans, culture plays a large role in variability in these matters.

8. First Exam - all three parts about same value

My suggestions for preparing this exam include reviewing the study guide, reviewing at least the most recent old exam available, going over the daily notes, video notes, and "primate news" -- there are always one or two multiple choice questions from recent news articles. Here is a list of videos to this point -- the video bits may not be accurate depending on available time, etc.

A.         Essay - I will pick one of these questions (1-2 pages on paper provided. These are essay questions so I expect coherent essays -- paragraphs with complete sentences. You can draw pictures, create supplementary lists and tables but they must be integrated into the essay itself.)

(Only a non-human primate has an excuse not to work out these before the exam! It is no excuse to say after the exam "I didn't understand the question!").


1 Compare and contrast two existing large primate species with respect to their sensory systems, limbs and locomotion,  brain features, and social/reproductive structures. Then discuss briefly the "synergy" among the various characteristics --that is how they fit together enabling adaptation to distinct niches.  Put another way compare and contrast two species of large primates ( compare/contrast any two of orangutans,  gorillas, common chimps, bonobos, and humans  on five dimensions.)

(Be sure to say something about each of the five features for each of your primates; then say how those features work together --the synergy-- to enable those species to "fit" well into their niches. (I think a niche originally meant a hole in the wall where birds could build a nest.))


2. From the videos and readings, we have encountered lots of information about various species of primates. What is the generic prototypic hominoid?   What do all of these species seem to have in common?  At a minimum, consider the five dimensions in essay 1.

 

Describe the common physical and behavioral (which includes social/sexual) features of that hypothetical being. (By hypothetical, I just mean that I am asking you to abstract the common features from known hominoids,  each of which has its own unique adaptive and historical characteristics as well.)

B. three Short answers (1/2 page each)

See old exams on the exam page. One of the short answers will be a version of the other essay question.   "What's new" topics are fair game.  For example, what the heck is "mechanicoelectrical transduction?" What primates do it? Why?

This semester we have a book (Gomez) that has some different topics and doesn't cover much at all about brains and senses other than vision. Expect a short answer question or two from that book. Here are some examples.

1. Why are individual faces important in the life of primates, expecially apes and humans? What adaptations, say over those of dogs or cats, might you expect because of this importance? (Gomez (2004, around p.15

2. Primates, especially apes and humans, tend to have longer periods of remaining in infant and juvenile periods. What advantages are there in this extended "childhood?" (Gomez, 2004, 16-24) also class discussion and videos.

3. What is an example of a monkey or ape motivated by "curiosity" -- and not a food reward? Gomez, 2004, around p.53-57)

4. How is diet related to the evolution of variations in human skin color? (see "news" & Eve video)

5. What is unique about human hands? (video notes) How might this be related to other unique human features.

C. Multiple choice (30 questions)

See old exams. Any topic or fact from readings, class discussion,  "what's new?", videos and video notes is fair game. I recommend that you review your notes, my daily notes, and all the video notes. There will be a few from Gomez, ch. 1 & 2 (not 3 unless explicitly discussed in class before the exam. We may, for example, get around to discussing Piaget and his ideas, Fig 3.1 in Gomez). Here is a similar table of Piaget's sensory-motor stages.

In general, if I didn't mention it in class, or in the daily or video notes or show it on video, it won't show up on the exam.

Major topics of class discussion are outlined in this review and guide.  These include:

The nature of primates their common and unique features, their evolution, and methods of studying primates.  How are conclusions  reached and well as what are these conclusions.

Something of the history of the field, including the people and the ideas that were and are important in shaping our understanding of these concepts. (Nothing that was not discussed in class on this topic will be on the exam.)

Some specific details about concepts of evolution, features of primate brain, senses, and limbs as well as specifics about the development of those topics. And finally, but not least, a beginning discussion of what is intelligence, how does it differ or not among species, and what is behind its development and evolution?